T e s e men wn T v W W W m w e e e e v e v v v e w ke v

Niromiher 1088 T L R T VAV . . ;o .
November 1988 Vi vid UILU-ENG-88-2257 ‘ . /

ACT-103

;:C @1???‘@1&'1’ ED SCIENCE LABORATORY
College of Engineerin g

Applied Conputation. Theory

4D-A201 651

FAST AND

| DROCESSOR—EFFICIENT

PARALLEL
ALGORITHMS
FOR REDUCIBLE
FLOW GRAPHS

YVijaya Ramachandran

BEST
AVAILABLE COPY

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Retease. Distribution Unlimited. .
! . N
58 12 8 00s

USCLASSIF lw

]
RCUNTYY CLASSIACATION OF THIS PAG
A # :‘1
form Approved —
REPORT DOCUMENTATION PAGE OMS No. 07040108 q
" [Te. REPORT SACURITY CUASSIFIGATION 15, RESTRICTIVE MARKINGS]
4% Unclassifjied
JCURITY CLASSIFICATION AUTHORIT TAVARABITY OF REPORT L
—— - Approved for public release; -
. DECLASSIHCATION / DOWNGRADING SCHEOULE : distribution unlimited
SREORMING ORGANIZATION REPORT NUMBER(S! S, MONI NUMBE
{ ULLU~ENG-88-2257 (ACT #103)
3¢ PERFORMING ORG 3 (€5, OFFICE SYMBOU] 70. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab 0f applicable) Office of Naval Research
i University of Illinois N/A
: DOAESS (Chey, Se: [P Code) . n. . ’)
1101 w. Springfield Ave. Arlington, VA 22217
Urbana, IL 61801 L
,‘ BT FORB T OIoR WGP TTUIOL |3 PROCORDMERT WESTRORNT IOCRTICATION NOMEA
ORGANIZATION Joint Services 0f appiicadie) N00O14--84-C-0149 -
Electronics Progtam
DORESS (Chty, State, and 2P Coc 70. SOURCE OF FUNDING NUMBERS
Arlington, VA 22217 ELEMENT NO. | NO. NO. SSION NO.
11. TITLE (inchude Security Claew
Fast and Processor-Efficient Parallel Algorithms for Reducible Flow Graphs
Ramachandran Vijaya
IPOR] DAT (Yoor, Do) 1S, PAGE COUN'
WM November., 196; [2 -
16. SUPPLEMENTARY NOTATION . P
(LA COSATI COC TS, SUBIECT TURMS (Continee On reverse ¥ hecemsery and ldentiy by Dlock numben '~ |
FELO GROUP SUS-GROUP algorithms, directed graphs, flow graphs, parallel r
| computation, PRAM model. h

77"5 d,ocunanT yeserls 7 ’
parallel NC algorithms for recognizing reducible flow graphs, and for finding domi- 5

nators, minimum feedback vertex sets, and a depth first search numbering in an rfg. All of these
algorithms run in polylog parallel time using M(n) processors, where M(n) is the number of proces-
sors needed to multiply two nxn matrices in polylog time; this is the best processor bound currently

known for polylog-time parallel algorithms for directed graphs. :
Thas she that finding a minimum feedback vertex set in vertex-weighted rfg’s or finding a :
minimum feedback arc set in arc-weighted rfg’s is P-complete. For arc or vertex weights in unary, we "

present RNC algorithms for these problems and show that these problems are in NC if and only if (
[oo . ke

~ the problem of finding a maximum matching is in NC. 'Z' Ly J p"w/ a l

20. DISTRIBUTION / AVARLABIUTY OF ABSTRACT
ﬂuncussmwmno 0 samg as reT.

00D Form 1473, JUN 88 Previous editions are obsviete.

P S B P st R R S S SR B -
Ty A O O M R A I A IR A

»TIC

FAST AND PROCESSOR-EFFICIENT PARALLEL

o0PY
INSPECTE®
[

ALGORITHMS FOR REDUCIBLE FLOW GRAPHS'

Accession Por

Vijaya & = [NTIS GRAsI g

DTIC TAB
Coordinated Science Imy Unannounced D
Justification
University of Ilinois, Urbana, IL 61801
By.
- Distribution/
Tech. Report ACT-103 Availability Codes

[Avail and/or

Dist Special
November 1988 l

A.

ABSTRACT

We present parallel NC algorithms for recognizing reducibie flow graphs,
and for finding dominators, minimum feedback vertex sets, and a depth first
search numbering in an rfg. All of these algorithms run in polylog parallel time
using M (n) processors, where M (n) is the number of processors needed to mul-
tiply two nxn matrices in polylog time; this is the best processor bound currently
known for polylog-time parallel algorithms for directed graphs.

We show that finding a minimum feedback vertex set in vertex-weighted
rfg’s or finding a minimum feedback arc set in arc-weighted rfg’s is P-complete.
For arc or vertex weights in unary, we present RNC algorithms for these prob-
lems and show that these problems are in NC if and only if the problem of
finding a maximum matching is in NC.

‘This work was funded by the Joint Services Electronics Program under grast N00014-84-C-0149.

e
bty

L viimatem a T

1. Introduction

Reducible flow graphs (rfg’s) are graphs that model the control structure of computer pro-
grams. They are used extensively in problems on code optimization and global data flow analysis.
Several linear time sequential algorithms for these graphs are known, including algorithms for
recognizing rfg’s [Tal, GaTa], for finding dominators [Ha] and for finding a minimum feedback
vertex set (FVS) [Sh]. The basis for all of these fast sequential algorithms is a depth first search on
the input graph. Recently, we have developed polynomial-time algorithms for finding a minimum
weight FVS in vertex-weighted rfg’s and a minimum feedback arc set (FAS) in arc-weighted or
unweighted rfg’s [Ral]. These algorithms make extensive use of algorithms for network flow
{(FoFu, La, PaSt, Ta2, GoTa). It is also known that the sequential complexity of these latter prob-
lems is at least that of finding a minimum cut in a flow network (Ral, Ra2].

In this paper we give parallel NC algorithms for recognizing rfg’s, for finding dominators,
and for finding a minimum FVS in an unweighted rfg. We note that the problem of finding a
minimum FVS in cyclically reducible graphs, a class closely related to rfg’s, is reported to be P-
complete in (BoDAPe). We also give an NC algorithm for finding a depth first search (DFS)
numbering for an rfg; however, none of our other parallel algorithms make use of this DFS
numbering. The processor bound for all of these NC algorithms is the number of processors need
by an NC algorithm to multiply two 2xa matrices. This bound is good with respect to current
NC algorithms for directed graphs, since most of these algorithms require this number of proces-

SOr1S,

We show that if arbitrary weights are allowed, the weighted FAS and FVS problems on
rfg’s are both P-compiete. Hence fast parallel algorithms for these problems appear unlikely to
exist. For the case when the weights are in unary, we present an RNC algorithm for the FAS
problem on rfg’s. We also give NC reductions between the weighted FAS problem, the
unweighted FAS problem, the weighted FVS problem and the problem of finding a minimum cut
in a flow network (when weights and capacities are in unary). Thus if any one of these problems
is in NC, then all of them would be in NC. In particular, an NC algorithm for the maximum

o E i el R RAr A St b de Sl iduudurtruirttnt vy ad 2 bt ST
pr e [RITIRTEIRY TR LN RIS e’ i/

£

. S

M)}
L]

v

matching problem would give NC algorithms for these three problems on rfg's, and an NC algo-
rithm for any one of these three problems would, in tumn, give an NC algorithm for maximum
matching.)

A preliminary version of this paper appeared in [Ra3]. Some of the NC algorithms in the
present paper use a smaller mumber of processors than the corresponding ones in (Ra3].

This paper is organized as follows. In section 2 we provide definitions. In section 3, we
present our parallel algorithms for preprocessing an rfg. In section 4 we present a parallel algo-
rithm for finding a minimum FVS in an unweighted rfg. Finally in section 5§ we give an RNC
algorithm for finding a minimum FAS in an unweighted rfg, and present P-completeness results
for the weighted FAS and FVS problems on rfg’s.

2. Definitions

2.1. Model of Parallel Computation

The parallel model of computation that we will be using is the PRAM model, which consists
of several independent sequential processors, each with its own private memory, communicating
with one another through a global memory. In one unit of time, each processor can read one gio-
bal or local memory, execute a single RAM operation, and write into one global or local memory
location.

PRAMS are classified according to restrictions on global memory access. An EREW PRAM
is a PRAM for which simultaneous access to any memory location by different processors is for-
bidden for both reading and writing. In a CREW PRAM simultaneous reads are allowed but no
simultaneous writes. A CRCW PRAM allows simultaneous reads and writes. In this case we have
to specify how to resolve write conflicts. We will use the COMMON model in which all proces-
sors participating in a concurrent write must write the same value. Of the three PRAM models we
have listed, the EREW model is the most restrictive, and the COMMON CRCW model is the
most powerful. It is not difficult to see that any algorithm for the COMMON CRCW PRAM that
runs in parallel time T using P processors can be simulated by sn EREW PRAM (and hence by a

:T‘&é,

e

Y

da i v s e

3wt A G T A A e i T a2 R TS SRR PR A

¥

W, YU

(14

ar

-4.-

CREW PRAM) in parallel time TlogP using the same number of processors, P.

Define polylog(n)-&oaog*n). The class NC is the class of problems solvable in

polylog (n) parallel time with a number of processors polynomial in », where n is the size of the
input This class is generally accepted to characterize the class of problems that can be solved
feasibly in parallel.

The class P is the class of problems solvable by a sequential algorithm running in polyno-
mial time. A problem is P-complete if every problem in P can be reduced to it in logspace. A P-
complete problem is in NC if and only if NC=P. Since it is widely conjectured that NC is a
proper subset of P, showing a problem to be P-complete is strong evidence that the problem is not
inNC,

For problems in NC, we would like to develop algorithms that run in polylog parallel time
and also use a small number of processors. For undirected graphs there are algorithms known for
several problems that run in polylog time using a linear number of processors (or less) on a
PRAM; these problems include graph connectivity, biconnectivity and triconnectivity, s—¢
numbering, planarity, etc. For directed graphs unfortunately, such efficient parallel algorithms
are not known mainly due to the transitive closure bottieneck. The best paraliel method known at
present to test reachability from one vertex to another in a directed graph is to find the transitive
closure of the adjacency matrix of the graph. To compute this in polylog time requires 2 proces-
sors (to within a polylog factor), where & is the matrix multiplication exponent, which is currently
2.375 (but for practical computations should be taken as 3). Thus, since rfg’s are directed graphs,
all of the algorithms we present in this paper are affected by the transitive closure bottieneck.

The algorithms we develop in this paper make use of some well-known basic parallel algo-
rithms as subroutines. We conclude this section with a brief review of these algorithms. For more
on the PRAM model and PRAM algorithms see [KarRa).

1. Boolean matrix multiplication and transitive closure: The standard matrix multiplication algo-
rithm can be parallelized to give a constant time algorithm using n3 processors on s COMMON

SR TR e T [e N e T T g e v T

25 B e Do T il M SR AR S SO S S AR A GRSt T A : M

L1288

—

-5-

PRAM to find the product of two axn Boolean matrices. Since (/+B Y*, for m2n, gives the tran-
sitive closure B* of an nxn Boolean matrix B, B* can be computed using logn stages of
Boolean matrix multiplication by repeated squaring and thus in O (logn) time on a COMMON
PRAM with n3 processors. The more sophisticated matrix multiplication algorithms (that work
formauicesoveraring.andcanbeadaptedtoBooleanmmixmulﬁpliuﬁon)lmdﬂwmselmto
mﬂkﬁz&ﬁmmmERBWorCRBWPRAMTMsmﬁﬁpﬁuﬁmofWonm Boolean matrices
can be done in O (logn) time with M (1)=n® processors on an EREW PRAM, and hence B* can
be obtained in O (log2n) time using M (n) processors on an EREW PRAM.

In many of the algorithms we present, the processor count is dominated by the number of
processors needed to multiply two nxn Boolean matrices. The steps that do not require matrix
multiplication typically need O (n2) processors. In such cases, we will state our processor-time
bound as parallel time ¢(n) using Q (n) processors. This will imply that the algorithm runs in
time ¢(n) with O (n3) processors on a COMMON PRAM, and it runs in time O (¢ (n)logn) with
O (n™) processors on an EREW or CREW PRAM. Any future improvement in the processor
count for matrix multiplication on any of these types of PRAM will cause a corresponding
improvement in the processor bound for the algorithm, since the remaining steps need O (n2) pro-
Cessors.

2. Prefix sums: Let + be an associative operation over a domain D. Given an ordered list
<xy,' ' x> Of n elements from D, the prefix problem is to compute the -1 prefix sums

S;=3x;.i=1,- - - ,n. This problem has several applications. For example, consider the problem
I-

of compacting a sparse array, i.c., we are given an array of n elements, many of which are zero,
and we wish to generate a new array containing the nonzero elements in their original order. We
can compute the position of each nonzero element in the new array by assigning value 1 to the
nonzemdemems,andcompuﬁnépmﬁxamswim+openﬁngasregmauddiﬁon.

The n clement prefix sums problem can be computed in O (logn) time using »/logn pro-
cessors on a EREW PRAM, assuming unit time for a single + operation.

-6-

3. List Ranking: This is a generalization of prefix sums, in which the ordered list is given in the
form of a linked list rather than an array. List ranking on n elements can be computed by a sim-
: ple algorithm in O(logn) time using # processors on an EREW PRAM; more elaborate algo-
rithms for the problem run in O (logn) time using n/logn Processors.
H’ 4. Tree contraction: Tree contraction is a method of evaluating tree functions efficiently in paral-
lel. The method transforms the input tree using two operations Rake and Compress. The opera-

tion Rake removes leaves from the tree. The operation Compress halves the lengths of chains in
the tree (a chain is a sequence of vertices with exactly one incoming and outgoing arc in the tree)
by removing altemate nodes in the chain and linking each remaining node to the parent of its
parent in the original tree. The Contract operation is one application of Rake followed by one
application of Compress. It can be shown [MiRe] that O (logn) applications of the Contract
operation to an » node tree are sufficient to transform the tree into a single vertex. This contrac-
tion can be done in O (logn) time with n processors on a CREW PRAM. More elaborate algo-
rithms for this problem run in O (logn) time with n/logn processors on an EREW PRAM.

Some of the algorithms we will present in this paper will use a modified tree contraction
method, which we describe at the end of section 3.

2.2, Graph-theoretic Definitions

A directed graph G=(V,A) consists of a finite set of vertices (or nodes) V and a set of arcs
A which is a subset of VXV. An arc a=(v,,v3) is an incoming arc to v, and an oufgoing arc

from v,. Vertex v, is a predecessor of v, and v is a successor of vy; v, is the tail of a and v, is

its head. Given a directed graph G=(V ,A) and a set of arcs C, we will sometimes use the nota- .
tion C G to denote the set C~\A. An arc-weighted (vertex-weighted) directed graph is a q
directed graph with a real value on each arc (vertex). ‘

A directed path p in G from vertex u to vertex v is a sequence of arcs @y, - * - .4, in A such

that a;=(w;,wis)i=l, - r with wi=u and w,,=v. The path p passes through each

wi,i=l,--- r+l. A directed path p from u to v is a cycle if u=v. A DAG is a directed acyclic

EReaiie bttt B T A X A

-7-

graph, i.e., a directed graph with no cycle. A rooted directed graph or a flow graph G=(V A,r)is a
directed graph with a distinguished vertex r such that there is a directed path in G from r to
every vertex v in V—{r}.

A rooted tree is a flow graph T=(V ,A r) in which every vertex in V—{r } has exactly one

incoming arc. If (x,v) is the unique incoming arc to v then u is the parent of v, and v is a child

of u. A legf is a vertex in a tree with no outgoing arc. The height of a vertex v in a tree is the
l? length of a longest path from v to a leaf. The height of a tree is the height of its root. A forest is a

collection of trees.

e Let G=(V ,A,r) be a rooted DAG. A vertex u is a descendant of vertex v if either u=v or

there is a directed path from v to 4 in G. The vertex « is a proper descendant of v if u#v and u
is a descendant of v.

Let G=(V,A) be an arc-weighted directed graph. A set F CA is a feedback arc set (FAS)
for G if G’V ,A-F) is acyclic. The set F is & minimum FAS if the sum of the weights of arcs
in F is minimum. Analogous definitions hold for a feedback vertex set.

Let G=(V ,A) be a directed graph, and let V'CV. The subgraph of G induced by V' is the
graph G, (V")=(V’ ,A’), where A’=A AV’ XV’. The graph G-V" is the subgraph of G induced on
V-v.

A reducible (flow) graph (or rfg) is a rooted directed graph for which the rooted depth first
search DAG [Ta2] is unique. Thus, the arcs in a reducible graph can be partitioned in a unique
way into two sets as the DAG or forward arcs and the back arcs.

An altemate definition of a reducible graph (due to [(HeUl]) is stated below.

Definition 2.1 [HeUl] Let G=(V A r) be a flow graph. We define two transformationson G :
Transformation Ty: Given an arc a=(v,v)in A removea fromA.
Transformation T5: Let v2 be a vertex in V-{r} and let it have a single incoming arc

a=(v,,v2). T replaces v1,v, and a by a single vertex v. Predecessors of v, become prede-

Y
4
i

'

L

cessors of v. Successors of v, and v, become successors of v. There is an src (v,v) if and

i
- e~ ==
- 3 . FERLER T R O » i .

D R T AT 2 Lo I ST ol

only if there was formerly an arc (v4,v1) or (vy,vy).

G is a reducible flow graph (rfg) if repeated applications of Ty and T'; (in any order) reduce G to
a single vertex.

Let G=(V ,A ,r) be a reducible graph and let b=(u,v) be a back arc in G. Then b spans ver-
tex w (or w is in the span of b) if there exists a path from v to 4 in the DAG of G that passes
through w. Given two vertices u,veV, vertex u dominates vertex v if every path from r to v
passes through 4 (note that 4 dominates itself).

It is well-known [AhUI1] that the dominator relation can be represented in the form of a tree
rooted at 7, the root of the flow graph G. This tree is called the dominator tree T of G. The des-
cendents of a vertex v in T are the vertices dominated by v in G. A vertex v’ is immediately
dominatedby v ifitisachildofv inT.

Given a set V'CV the dominator forest Fy- for V' represents the dominator relation res-
tricted to the set V’. Let Vy=(veV lv is the head of a back arc in G }. We assume that r is the
head of a back arc in G. Hence it is easy to see that Fy, is a tree; we call it the head dominator
tree of G and denote it by T),. This tree can be constructed from T by applying transformation T';
of Definition 2.1 to each vertex v in T thatisnot ahead of aback arcin G

3. Paraliel Algorithms for Preprocessing RFG’s

In this section we present NC algorithms to test if a rooted directed graph is an rfg, to con-
struct the head dominator tree for an rfg, and to find a DFS tree in an rfg; we also introduce a

modified tree contraction method in this section.
3.1 Testing flow graph reducibility:
Input: G=(V A ;r) with adjacency matrix B .

1. Test if G is a flow graph, i.e., test if every vertex in V—(r } is reachable from r.

Form B*, the transitive closure of B and check if every nondiagonal element in row 7 has a
1.

ey aw s e ey e e s e e sy N T e v, e ey e it e gme @ ST e mwme eyt e e et -
e . R . . o ..

-9.

2. Construcs a tree T rooted at r using the algorithm in [GaMi] to find a directed breadth-first
search tree. Mark all arcs in T as forward (f) arcs.
3. Foreach arc (u,v) in G-T, mark (k,v) as b if v is an ancestor of &, and as f otherwise.
4. Delete all arcs marked b and check if resulting graph G’ is acyclic. (If G is an rfg then G’
must be acyclic.)
Form transitive closure of the adjacency matrix B’ of G’ and check that for every i <j<»n,
one of the two entries in position (i ,j) and position (j,i) in B’* is zero.
S. Compute dominators in G’ using the algorithm in [PaGoRa].
6. For each arc (4,v) marked b in G, check if v dominates . G is a rfg if and only if v dom-

inates # for all arcs (u,v) marked b.

Lemma 3.1 Algorithm 3.1 correctly determines if the input graph is an rfg.

Proof If G is an 1fg, then its arcs can be partitioned in a unique way as forward and back arcs,
and for any back arc b=(u,v), vertex v must dominate vertex 4 [HeUl]. Hence the tree T found
in step 1 must contain only forward arcs of G . Further, if an arc (u,v) notin T is aback arc of G,
then v must be an ancestor of ¥ in T. Further, consider any arc (u,v), with v an ancestor of u in
T. Then arc (u,v) completes a cycle in G, consisting of itself, followed by the path in T from v
to u. One of these arcs must be a back arc. Since all of the arcs in T are forward arcs, it follows
that (,v) must be a back arc. Hence steps 2 and 3 of Algorithm 3.1 correctly identify the forward
and back arcs of G if G is an rfg.

A flow graph is an rfg if and only if its set of arcs can be partitioned into two sets E and E;
such that £ forms an acyclic subgraph D of G, and for each a=(x,v) in E 2, v dominates ¥ in D
[HeUl). Thus all of the tests in steps 4, 5 and 6 are satisfied if and only if G is an rfg.[]

Steps 1, 2, 4 and S take O (logn) time using Q (n) processors. Steps 3 and 6 can be imple-
mented in O (logn) time using a linear number of processors using tree contraction. Hence the
complexity of this algorithm is O (logn) parallel time using Q (n) processors.

-10-

3.2 Forming Ty, the head dominator tree for G :

1. Use algorithm 3.1 to construct DAG G’.

2. Use the algorithm in [PaGoRa) to compute the dominator tree T for DAG G’.

3. Use tree contraction to extract the head dominator tree T, from T.

Steps 1 and 2 take O (logn) time with Q (n) processors, and step 3 takes O (logn) time with

n processors. Hence step 1 dominates the complexity of this algorithm.

3.3. NC algorithm for finding a DFS numbering for an rfg G=(V A r)

1. Use algorithm 3.1 to construct the DAGG’.

2. Find a DFS tree in DAG G’ as follows,

i)

ii)

ii)

Identify a vertex v with more than n/2 descendents for which every child has at most n/2
descendents:

Find the transitive closure B’* of B’. Determine the number of descendents of each vertex
as the sum of the nondiagonal entries in its row in B’* . Each arc in G’ compares the number
of descendents of its head with the number of descendents of its tail, and marks its tail if it
is not the case that the head has at most n/2 descendents and the tail has more than n/2 des-
cendents. The (unique) unmarked vertex is v.

Find apath P fromrootr tov:

Find a directed spanning tree for G’ by making each vertex with an incoming arc choose
one such arc as its tree arc. Form P as the path in this tree from 7 to v.
Associate each descendent v/ of v with the largest numbered child of v (numbering accord-
ing to some fixed order) from which it is reachable; associate each vertex v not reachable
from v with the lowest vertex in path P from which it is reachable:

Use list ranking to number the vertices on P in increasing order from the root, followed by
the children of v in some fixed order. Replace all nonzero entries in the columns of B°*

-11-

corresponding to these nodes by their new number. For each row, find the maximum num-
i bered entry in that row, and identify it as the vertex with which the row vertex is to be asso-
ciated.

iv) Recursively solve problem in subdags rooted at the newly numbered vertices, together with
their descendants as computed in step iii.

Lemma 3.2 Let GV ,A,r) be 2 DAG, with |V |=n. There exists a unique vertex ueV with
more than /2 descendants for which every child has at most n/2 descendants.
Proof Straightforward, and is omitted.(]

Lemma 3.3 Algorithm 3.3 correctly finds a DFS tree in an rfg.

Progt We observe that the algorithm constructs a DFS tree consisting of the initial path P to v,
followed by a DFS on the vertices reachable from the children of the largest numbered child of v,
followed by vertices reachable from the second largest numbered child of v (but not reachable
from the largest child of v), ... , followed by vertices reachabie from the smallest numbered child
of v (but not reachable from larger numbered children of v), followed by vertices reachable from
nodes on P—{v} in reverse order of their occurrence on P. It is not difficult to see that this is a
valid depth first search.{]

Step 2i takes O (logn) time using Q () processors. Step 2ii is very efficient: it takes con-
stant time using a linear number of processors on an EREW PRAM. Step 2iii takes O (logn) time
using #2 processors on an EREW PRAM. Finally the recursive steps take logn stages since each
new subproblem is at most half the size of the previous problem; further the sum of the sizes of
the new problems is less than the size of the previous problem and hence the processor count is
dominated by the first stage. Thus the algorithm takes O (log?n) time using Q (#) processors.

Other NC algorithms for finding a DFST in a DAG are known (GhBh].

In the next two sections we present parallel algorithms to find minimum feedback sets in

rfg’s. Our algorithms require computation on the head dominator tree T, of the input rfg

T T] Ty e e § S T T T ST Yoy Sy ey
ot T Ty LYY RTINS g 3

2 v

-

AT

-12-

G=(V ,A,r). For this we will use a variant of tree contraction. We conclude this section with a
description of this modified tree contraction method.

Recall the a chain in a directed graph G is a path <vy,- - -,v> such that each v; has
exactly one incoming arc and one outgoing arc in G. A maximal chain is one that cannot be
extended. A legf chain <vy, - * - v;-1,v;> in a rooted tree T=(V ,A ,r) consists of a maximal chain
<vy, * - * ,W-1>, With v; the unique child of v;_;, and with v;, aleaf.

The two tree operations we use in our modified tree contraction method are Rake and
Shrink. As before, the Rake operation removes leaves from the tree. The Shrink operation shrinks
each maximal leaf chain in the current tree into a single vertex.

Lemma 3.4 In the modified tree contraction method, O (logn) applications of Rake followed by
Shrink, suffice to transform any » node tree into a single vertex.
Proof Consider another modified tree contraction algorithm in which the Shrink operation shrinks
all maximal chains, including leaf chains, into a single vertex (one for each chain). This
modification certainly requires no more steps than regular tree contraction, and hence by the
result in {(MiRe], transforms any n node tree into a single vertex in O (logn) time. But the number
of applications of Rake followed by Shrink in the above modified tree contraction method is
exactly the same as that in our modified tree contraction method, since the only difference is that
a chain gets shrunk in scveral stages, rather than all at once.{]

In our algorithms for minimum feedback sets, we will associate appropriate computation
with the Rake and Shrink operations in order to obtain the desired result.

4. NC Algorithm for Finding a Minimum FVS in an Unweighted Rfg

We first review the basic ideas in Shamir's polynomial time sequential algorithm [Sh).
Given an rfg G=(V ,A ,r) together with a partial FVS S for G,ahead v in G is actve if there is a
DAG path from v to a corresponding tail, which is not cut by vertices in S. A maximal active
head v is an active head such that none of its proper DAG descendants in G is an active head.

g =

.

. e ey =
ee o ma e

BT TR LT
IR

S et At e

IR

g

S ST p—
T T T T T S e S e e ey CARCRSTEARE

S8V P A

-13-
4
% The following theorem is established in [Sh].

Theorem 4.1 {Sh] Let G=(V A r) be an rfg, and let S be a subset of a minimum FVSinG. If v
is a maximal active head in G with respectto S, then S_y{v] is also a subset of a minimum FVS
inG.

Using Theorem 4.1, we obtain the following algorithm, based on the head dominator tree, to

construct a minimum FVS for an rfg.
4.1 Minimum FVS Algorithm n

Input: An rfg G=(V ,A ,r) together with its head dominator tree T}, .
Output: A set S ¢V which is a minimum FVS forG.

1. Initialize S «$.

2. Repeat 7;

L

a) Se&S L, wherel is the set of leavesin T,

[b) GeG-L,TyeTy-L.
l‘ r"..
¢) Find U, the set of heads in current G that are not active in G. T

:F d) For each vertex v not in U, find its closest proper ancestor w in T}, that is not in U, and %
I

{- make w the parent of v; remove all vertices in U from 7). L
until Ty=$.

| £
We implement the above tree computations using our modified tree contraction method. In

1+

order to obtain a processor-efficient implementation of the above algorithm, we define T°y, the

. head-tail dominator tree of G . For cach vertex u in G that is 2 tail of a back arc but not the head %
- of any back arc in G, we set parent of & in T's 10 be v, where v is a head of a back arc in G, v
E dominates u in G, and no child of v in T, dominates u in G. T'y is the tree obtained from T} by "

' including these tail vertices of G (all of which will be leaves in T's). T'x can be computed from
[G in a manner similar to the computation of T, (Algorithm 3.2). Our parallel algorithm will

PN S R DI ORI SRR A A SIS AT S - P A I PRI IR S I CONIE) 75 o5 TS S

o W e 30 7 BRI T N S A N AN A S

L6

™.

-14-

perform modified tree contraction on T}, and will also transform T”, to keep track of the current
structure of G .

The computation associated with a Rake step is exactly one application of step 2 of the
above algorithm: we add the leaves of the current tree T, t0 S, and delete them from 7. In T,
we delete the subtree rooted at each of the vertices we deleted from T, . We then determine the
active heads in the current G. A head & is active in the current G if and only if it lies in T}, and
at least one of its corresponding tails lies in T°,. This is easily determined for all heads in con-
stant time with O (m) processors on a COMMON PRAM by having a processor for each back arc
(u,v), which informs vertex v if u if in T",. The set U is then determined as the set of heads that
are not currently active. Each vertex in T, (7",) which is not in U finds its closest proper ancestor
inT) (T',) that is not in U, and makes it its new parent. Vertices in U are then deleted from both
Ty and T’,. This computation can be done with tree contraction and takes O (logn) time with
O (n) processors on an EREW PRAM.

Now consider the operation Shrink, which shrinks each maximal leaf chain in 7}, into a sin-
gle vertex. During the Shrink operation we will identify the vertices in these leaf chains that
belong to S based on the following observation. Let C=<v, - - - ,v;> be a leaf chain, where v; is
the leaf. Suppose v; is in the minimum FVS S. Then the largest j <i such that v; isin § (if such a
J exists) is immediately determined as the largest j <i for which there is some back edge (#,v;)
such that v; has a path to ¥ in G—{v;). This is because v; dominates all v, .k >i, hence any cycle
containing v;,j <i, which is cut by a vertex v, with k>i is certainly cut by v;; thus v; will
become a maximal active head if v; is added 0 S .

Our computation for the Shrink operation determines for each v; in C, the largest j <i (if it
exists) such that v; is in S if v; is in S. Then for each i for which j exists, we place a pointer
from v; 1o v;. This defines a forest F on {vy,- - - ,v). Since v; is a leaf in T, it belongs to S.
Hence the vertices in C that belong to S are precisely those from which v; is reachable in F. We
identify these vertices using regular tree contraction and add them t0 S .

e v oy
LAsciAP o

*" - “T X

\J

e T e 1y
AR

L Ly
SN

1
P
v

v FEFERE D ek S I S Y AR T o e SR S A PR A AN DRI A T

.

RS

i’:‘.'—."“.'\

~
P

GRRe

£ T R E T N P 0 P e v W WL e o PO L W 1 e P A e g B L R L L e B POP MSA r, T Y gt e S R

T N T g

-15-

We now describe a method to compute v; for each v;. Each v; determines the largest i
(i2k) such that v; dominates all of the corresponding tails of vx, and places this value in the kth
location of an array A [1../]. Each vertex v; inspects this array and finds the largest position j
(j <i) such that A [/]<i. Then clearly v; is the unique vertex in the leaf chain such that v; is in §
ifv;isinS.

Each v; can determine its corresponding v; in O (log!) time with [processors on an EREW
PRAM, and hence this computation can be done for all vettices in the leaf chain in O (logn) time
with n2 processors. (We do not attempt to be more efficient with this computation since the
overall algorithm requires Q (n) processors and thus an O (n2) processor bound is adequate for
our needs.)

By Lemma 3.4, O (logn) applications of Rake and Shrink operations suffice to contract T),
to a single vertex, and at this point we will have constructed a minimum FVS §. Thus this gives a
parallel algorithm to find a minimum FVS in an rfg in O (log2») time using Q (n) processors. A
high-level description of the parallel algorithm is given below.

4.2 Parallel Minimum FVS Algorithm

Inpus: An g G=(V A 7).
Output: A set SV which is a minimum FVS for G.

1. Form T, and T",; initialize S «¢.

2. Repear

a) Rakeleaves
i) Place leaves of T, in S.
ﬁ)mr..mmamwuudvmmmmpi)inn.
iii) For each vertex v in T, determine if v is active by checking if any one of its
corresponding tails is in T”), .

iv) Let U be the set of vertices in T, that are not active heads. For each vertex v in T (T"))

-~ SRR

)

R U,
ST T

PR ﬁ MRt

T ey S
St

crr At RRRITON

RATARUGRI, -)
(kS KL =4 e

\
N
L,‘,Zi.
.
2,

-16-

that is not in U, find its closest proper ancestor w that is not in U and make it its new
parentin T (T'4).
v) Delete vertices in U from T, and T",,.

b) Shrink leaf chains
Let <vy,v3, ' * - ,v> be the leaf chain, with v; the leaf,
i) For each v, find the largest { (i 2k) such that v; dominates all of the corresponding tails
of v, and place this value in location k of array A[1..k].
ii) For each v; use array A [1..k] to find the largest position j (j <i) such that A [j]<i. Place
an arc from v; to v; in an auxiliary graph F on vertices vy, - - - ,v;.
iii) Find the set of vertices from which v; is reachable in F and add these vertices to S .
iv) Delete vertices vy, - - - ,v; from T, and delete the subtrees rooted at these vertices from
Ts.
v) Perform parts iii, iv and v of the Rake step.

until Tp=$.

5. Finding a Minimum FAS in an Unweighted Rfg and Related Problems

We first state some definitions and results from [Ral], which gives a polynomial-time
sequential algorithm for finding a minimum FAS in an rfg. We then give an RNC algorithm for
this problem and related resuits.

A flow network G=(V A 5 ,t,C) is an arc-weighted directed graph with vertex set V and arc
set A, where s and ¢ are vertices in V called the source and sink respectively, and C is the capa-
city function on the arcs which specifies the arc weights, which are always nonnegative. The
maximum flow problem asks for & flow of maximum value from s to ¢ (see [Ev, FoFu, PaSt,
Ta2] for definition of a flow). A cuz C separating s and ¢ is a set of arcs that breaks all paths from
s t ¢t. The capacity of C is the sum of the capacities of arcs in C. A minimmm cut separating s
and ¢ is a cut of minimum capacity. It is well-known that the value of & maximum flow is equal

~F LR TR NN R N i R e TN I

-17-

2 to the value of a minimum cut [FoFu).
. Let G=(V ,A,r) be an arc-weighted reducible graph and let v be the head of a back arc in : |
. G. Let b1=(u1,vy), - - - br=(u,,v,) be the back arcs in G whose heads are dominated by v. The .
dominated back arc vertex set of v is the set V,={v’€V |V lies on a DAG path from v to some
é u;i=1,- - - ,r). Itis easy to see that v dominates all vertices in V,.
Definition 5.1 Let G=(V .A) be an arc-weighted reducible graph with nonnegative arc weights,
e and let v be the head of a back arc in G. For convenience of notation we denote G, (V,), the sub-

graph of G induced by the dominated back arc vertex set of v, by G, (v). The maximum flow net-

work of G with respect to head v is a flow network G,, (v) formed by splitting each head A in
B G,(v)into & and A’ (see figure 1). All DAG arcs entering or leaving the original head & will

enter or leave the newly formed A ; all back arcs entering the original 2 will enter A&’. There will
be an arc of infinite capacity from A’ to a new vertex ¢. All other arcs will inherit their capacities
from their weights in G. We will interpret v as the source and ¢ as the sink of G, (v).

- I
ot hIF
i3
' 5
e 5
& g dpelt ks 5
(e.9), lc.g) and (d.1). ;

B
3 2
' figure 1 {

2

Definition 5.2 Let G=(V A7) be an arc-weighted reducible graph. We define G, (v), the min- K3
£ %
oy H

R PR I R P T PRI D R IS L L W M AN ST RN e T AT N BN B T AR B N P X g g ey R L

-18-
= cost maximum flow network with respect to head v inductively as follows:
5 a8 If v dominates no other head in G then Gew (V=G (V).
£y b. Let vy, ---,v, be the heads immediately dominated by v in G and let the capacity of
B MiMMUM CUL 0 Goer (Vi) be i =1, - - - 7. Then G (V)=(V.A) Where V is the same as the
- VETEX St 0T Gy (V) a0 A = {a1CS i Gy ()} _(AICS i G (Vi)i =1, - - * # W F, , Where
Fy = {fw=v.v)li=], - - ,r, with capacity of f, equaltoc;}.
‘33’ We call F, the mincost-arc set for head v ; if j is a head immediately dominated by head i then
= fij is the mincost arc from head i to head j . :
Figure 2 gives an example of Gy (V). :
?*:7
" ' ‘
"
t
N
o figure 2)
i The mincost maximum flow network with respect to head v for 2
the graph G=(V A,r) of figure 1
K
X l
[It is established in [Ral] that following algorithm determines the cost of a minimum FAS in H
- an arc-weighted reducible graph G. If G is an unweighted graph, then by the result in [Rad) this é
value also gives the maximum number of arc disjoint cycles in G . ;
L;’ 5.1 Minimum FAS Algorithm for Reducible Flow Graphs 3
{

e

T PR N TS PR M TNRI, Rt NN R T T e A T S T

e s TRt SR PR A L AR IRt Ml 51 Ui - e b At

-19-

g et

Inpus: A reducible graph G=(V ,A ,r) with nonnegative weights on arcs.
Ousput: The cost of a minimum FAS for G.
N begin
1. Preprocess G : Label the heads of back arcs in G in postorder, Derive the head dominator tree
" T, for G . Introduce a pointer from each vertex i in Ty (except r) to its parent 4;. Let the number
of heads be & .
~ 2.Fori=1, - processhead i:
a. Find the capacity of minimum cut, ¢;, in G ({).
b. If i#k then introduce an arc of weight ¢; from A; o i in G. (Note that G changes during
the execution of the algorithm so that G,, (i) is the same a8 G (i) if G were unchanged.)

3 3. Output ¢, as cost of minimum FAS for G.

end.

We impiement the above tree computations once again using our modified tree contraction
method. For a Rake step, we form G, (1), for each leaf 1 in T, and compute c;, the capacity of a
minimum cut in G, (/). If /#h then we place an arc of capacity ¢; from A; to /. Finally we delete
all leaves from the current T), .

R e I -

The complexity of the Rake step is dominated by the complexity of computing minimum
cuts in the mincost maximum flow networks associated with the leaves of T, . The total size of all
of these networks is O (m+n), where m and n are the number of arcs and vertices, respectively,
in G. Hence, using the algorithm in [MuVaVa] to compute minimum cuts, we can perform the
Rake step by a randomized algorithm that runs in O (log2s) parallel time with O (m -»5-) proces-
sors on an EREW PRAM. |
The Shrink operation is a little more involved. We assume some familiarity with the results
. in [Ral). Let C=<vy, - - - ,v;> be a leaf chain in T, with v; the leaf. During the Shrink operation,
we will determine the capacity of a minimum cut in Gy, (v;).i=1, - - - ,I. We can then use this to

i consStruct t0 Guw (v1), and hence the current G .

PR P ST L N R R R

) -20-
© Our paralle] algorithm will PrOCesS G (V1) in chunks. For this we develop som notation.
i! Let Gi/, 15i<j<I be the graph G (v;) with ‘,A
a) Anuc;dominatedbyv,delewdandmplwedbysinglemoﬁnﬁxmupacnyﬁomv,-m, |
u b) The capacities of the mincost arcs (Vg—p, Vi) k=i+1, - - - ,j=1 set 1o oo, and
F) The mincost arc (vj-1,v;) deleted.
, The graph Gif*' will denote Gpw(v;) With the capacities of all mincost arcs
(Ve-1Va)k=i+1, - - -] set to o, We will denote the mincost arc from v;_; 10 v, j>i i Gum (Vi)

: by ¢; and call it a chain mincost arc.

We will use the notation niv to denote the value of a minimum cut in Gi, and m; 1o

)b denote the value of a minimum Cut in G (v;). We define niv=0 if i=j and m; =0 if i=/+1.

Lemma 5.1 Let M be a minimum cut in G (v;) that contains a chain mincost arc ¢;. Then v;,

is separated from v; by M.

m

Proof Consider the vertex partition S\ T induced by M, where § is the set of vertices in the ?
component containing v; in G-M. If both v;; and v; are in § (or T') then we can remove ¢;

a—
NPERA
Moy

from M and still have a cut, contradicting the fact that M is a minimum cut. If v;_, is in § and v;
F is in T, then v;., is separated from v; by the cut as required. Finally, v; in S and v;. in T is ot
possible since every path from v; to v; must pass through v;_,.[] '

,_.,_,,_
o

Lemma 5.2 Let M be a mirimum cut in Gyen(v;). Then M contains at most one chain mincost 1

Proof Suppose M contains two chain mincost arcs ¢; and ey <k. By Lemma 1, v,y is (
- separated from v; by M. Hence every path from v; 0 vy is cut by M~{e). Thus M~{ex) is a cut :
fOT G (v;) contradicting the fact that M is a minimum cut.[) ,;
" Lemma 5.3 Let M be 8 mitiimum cut it Gues (vs), for some &, 1<k <J, and let M separate v; from E
E vit for some i>k. Let N be a minimum cut in G4. Then N_{¢;) is a minimum cut for a
. Grn (), 1%4-4m; i the value Of & MINIMUM Cut in G (ve), 80d N _M; is 2 minimum FAS for

G, (), where M; is a minimum FAS for G, (v;).

et g
b L A
L

ST,
R

-21-

%

o . Proof Let G’ pun (Vi) be G (Vi) with the capacities of mincost arcs (v;_1,v;)j=k+1k+2, - - - i-1
h increased to eo. M will continue to be a minimum cut in G'pm (Vi) Since M separates v; from v;_;
: in Gygw(v2). Since M is a minimum cut, none of the arcs in M are dominated by v;, since M
would be a cut even if all such arcs are deleted from it. Since M must contain e;, we can write

M=M'(_{e; }, where M’ contains no mincost arc.

Now consider N. N is a minimum cut in G%¢. Since all of the mincost arcs in G/ have

infinite capacity, N contains no mincost arc, and every arc in N appears in Gpum(vx). N must ‘
separate v;_; from v; in G4, since there is a path of infinite capacity from v; to v;_; and from v; ' -1
tot inG!.-".l-hneNU(e;}sepamesv.-ﬁomt in Guyw (v). Finally, IN 1SIM’ | since M’ is a |
cut for G&*. Hence N1_y{¢;) is a minimum cut for G (vs).

By definition, the capacity of ¢; is the capacity of a MInIMUM CUt in Gy (¥;), Which is m;.

Hence né#+m; is the capacity of minimum Cut in Gy, (v).

Finally, since N has no mincost arcs and N_{e; } is a minimum cut for G (vs), it fol-

lows from the results in [Ral] that N_M; is a minimum FAS for G,(v;), where M; is any ;

minimum FAS for G, (v;).[]

| Lemma 5.4 Let 1<i=i<iz< - * - <i,mjSl+1 be any sequence of indices. Let N be a minimum
- cutin Ga*, k=1, - - - r=1. Then Ny N2 - - - \UN,((UM; is an FAS for G, (v;), where M;
L is an FAS for G, (v)). - ‘
- Proof By inductionon r. : .
b Base: r=2. Suppose j</. N, is a minimum cutin Giy. Hence N\ must separate v;_; from v; in f“
z.. G/, since there is a path of infinite capacity from v; t0 v;_, and from v; to ¢ in Gi/. Hence ;}
| N1 (¢}} is 8 CUt int Gpua(v:). Hence by the results in (Ral], Ny_M; is an FAS for G, (), s
f where M; is any FAS for G, (v;). If j=i+1 then we note that any cut in Gi/*! is an FAS for ‘
o GO)aswel .
Induction step: Assume that the statement of the lemma is true for all sequences of indices of ;

gj length 7= ~1 or less, and let r=r’ . By the base case, N _M;, is an FAS for G, (v;), where M;, is

PPN DR A A AR P LR SR SO PR Y T e AT

ﬁ

=fay

T

2.

any FAS for G, (v;,). By the inductive hypothesis, N2 * - \UN,\UM; is an FAS for G, (v;).
Hence Ny - - - \UN, (UM; is an FAS for G, (v;).[]

Lemma 5.5 Let 1<i=i|<iz< ‘- <i,=jSI+] be a sequence of indices such that there exists a
minimum cut in G (v;,) that separates v; . from v; k=1, - p, where p=r-1 if j<! and
p=r-2 if j=l+1. Let N; be a minimum cut in G4+ k=1, - - - r~1. Let M; be a minimum FAS
for G, (v;). Then Ny - - - \UN,-1\UM; is a minimum FAS for G, (v;).

Proof By inductionon r.

Base: r=2. Then i=i and j=i,. If j<I then the resuit follows from Lemma 5.3. If j=/+1 then no
minimum Cut in G (V;) Scparates any v; from v;_;, i <t<l. Hence any minimum cut in G /+!
is a minimum cut for G (v;) and the result follows.

Induction step: Assume that the statement of the lemma is true for all sequences of indices of
length r=r"-1 or less, and let 7=, By Lemma 5.3 Ny\M;, is a minimum FAS for G,(v;),
where M;, is any minimum FAS for G, (v;,). By the inductive hypothesis, Na_ - - - \UN, _UM; is
a minimum FAS for G, (v;)). Hence Ny - - - _UN,\UM; is a minimum FAS for G, (v;).[]

Let I/ be the minimum value of the sum a'4n'™y .. 4a*J, where
1Si<iz< - * - <ip—1<jSi+1, and the indices i; and their number 7 220 are allowed to range over
all permissible values. Note that [¢#+lmpii+l,

Lemma 5.6 Let 1<i={,<i3<- - <i,=j<I+1 be a sequence of indices such that there exists &
minimum cut in G,...(ﬁ,-.) that separates v, _; from v, k=1,--- p, where p=r—1 if j</ and
p=r-2if j=l+1. Then the cost of a minimum FAS for G, (v;) i IV +m;.

Proof By Lemma 5.4, there exists an FAS in G, (v;) with cost n‘ /s - - - 4nird 4m; for any
sequence of indices i <j2< ‘- * <j,-1<j. By Lemma 5.5, a minimum FAS in G, (v;) has cost
nideniving . - . nv-J 4m;. Hence the indices iz, - -+ i,y will contribute to the minimum in the
expression for /'V. Thus the cost of a minimum FAS for G, (v;) is 1{v+m;.[]

Corollary m;=]i i+,

‘.. .

’ L4 .A) .
o S
2 Ln

TT S
Ry &

-

!
;
b

A4
+
‘o
(S
e,
A
i"
Ty
-

v.f

Pl e D0

-23-

Lemma 5.7 Let h={ (i+j)/2] .'I‘henl"-l'amtait(\, s11-'v'=+wr-v+v-i.
Proof An easy proof shows that IV <, <30 s’1"-'=+nw+4n' and ,_min S,1""‘+u"~v+v-isl"-f 0

The characterization in Lemma 5.7 leads to the following implementation of the Shrink step
in the parallel algorithm to find the value of a minimum FAS in an rfg.

52 Parallel FAS Algorithm for SHRINK Step
Input Graph G (v1) with its associated head dominator path <v,v2, " * - >
l1.Fori=l,--- !l do
Compute /‘¥+! by finding the value of a minimum cut in Gif*!.
2. Fori=1,---
For j=i+1,--- J+1 do
Compute név by finding the value of a minimum cutin G/ .
3.Fork=12,- - ,[logil do
fori=l, - - J-2*
for jmi+2k-141 i 425142, - - - j42% do
Let h=[(i+j¥2]

ij i iP4nPALI
| 8,"%‘,,(1 +rPAH1J)

4. Fori=l, -l output }i4+! a8 value of minimum Cut fOr G (V).

Let G (v1) have 7 vertices and s arcs. Step 1 requires the computation of [S7 minimum
cuts in parallel on graphs whose total size is O (7+s). Hence this step can be executed by a ran-
domizedalgoriﬂminO(log’r)ﬁmewithO(s"r”)ptocesmsonmmwmAM.uﬁngdn
algorithm in [MuVaVa). Step 2 requires the computation of O (/2) minimum cuts and in the
worse case this requires O (log?r) time using O (s -755) processors for a randomized algorithm on
an EREW PRAM. The inner loop of step 3 (using indices { and j) can be executed in constant

LA W AT UG T i RO AP AT I N PO g ot IR Rt NNy s g T R R T LT TR, LR TR TN I TR S i e Ry

-2 -

time with O (/=0 (r2) processors and hence step 3 can be executed in O (logr) time with O (r?)
processors by a deterministic algorithm on an EREW PRAM. Thus the complexity of the Shrink
step is dominated by step 2.

The FAS algorithm uses the above Rake and Shrink operations logn times. Hence it is a
randomized algorithm that runs on an EREW PRAM in O (log>x) time using O (m -n35) proces-
sors. This is an RNC algorithm.

At this point we have the value of a minimum cut in all G, (v), where v is the head of a
back arc in G. Hence we can construct G (v) for each such v and find a minimum cut in each
of these graphs in parallel using the RNC algorithm of [MuVaVa). From this we can extract a
minimum FAS for G as follows: Place a pointer from each mincost arc (4,v) in any of these
minimum cuts to the minimum cut for Gumm (v). Now a minimum FAS for G consists of the set
of arcs in G that are in some minimum cut that is reachable from the minimum cut for G, (7) in
this pointer structure. This is an easy NC computation and thus we obtain an RNC algorithm to
find a minimum FAS inthe rfg G.

Finally we present some results on the parallel complexity of finding feedback sets in
weighted rfg’s.

Lemma 5.8 The following problems are reducibie to one another through NC reductions.

1) Finding a minimum FAS in an ynweighted rfg.

2) Finding a minimum weight FAS in an rfg with unary weights on arcs.

3) Finding a minimum weight FVS in an rfg with unary weights on vertices.

4) Finding a minimum cut in a flow network with capacities in unary.

Proof: Polynomial-time reductions between between 1), 2), and 3) are given in (Ral]. We note
that all of these reductions are NC reductions as well. We show that 4) reduces to 2): We use the
NC reduction in [Ra2] from the problem of finding a minimum cut in a general flow network G
to the problem of finding a minimum cut in an acyclic flow network N. Minimum cut for N can
be obtained by finding a minimum weight FAS in graph G’ derived from N by coalescing source

and sink.
We also have the result that 2) reduces to 4) since our parallel FAS algorithm uses O (logn)
applications of an algorithm for 4) together with some additional NC computation.[)

Lemma 5.9 The following two problems are P-complete:
1) Finding a minimum weight FAS in an rfg with arbitrary weights on arcs.
2) Finding a minimum weight FVS in an rfg with arbitrary weights on vertices.

Proof: 1t is established in [Ra2] that finding minimum cut in acyclic networks is P-complete. Let
G be an acyclic network with source s and sink ¢. Let G’ be formed from G by combining s and
t into a single vertex r. Then G’ is an arc-weighted rfg rooted at » and a minimum weight FAS

in G gives a minimum cut in G . Hence part 1 of the lemma follows.

We can reduce the minimum weight FAS problem on rfg’s to the minimum weight FVS
problem on rfg’s by replacing each arc in the arc-weighted graph G by two arcs (u ,w) and (w.v)
and assigning to w the weight of arc (u ,v). The original vertices in G are assigned a weight 2 W,
where W is the maximum weightofanymcix_lG.andn is the number of vertices in G. It is
easy to see that a minimum-weight FVS in the new graph gives back a minimum weight FAS in
G having the same weight. This establishes part 2 of the lemma.{]

References
[AhUl] A. V. Aho, J. D. Ullman, Principles of Compiler Design, Addison Wesley, 1977.

[Al] F. E. Allen, "Program optimization," Annual Rev. Automatic Prog., vol. 5, Pergamon Press,
1969.

[BoDAPe) D. P. Bovet,'s. De Agostino, R. Petreschi, "Parallelism and the feedback vertex set
problem," Inform. Proc. Lett., vol. 28, 1988, pp. 81-85.

{F1] R. W. Floyd, "Assigning meanings to programs,” Proc. Symp. Appl. Math., 19, pp. 19-32,
1967.

[Il;%Fu] L. R. Ford, Jr., D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, NJ,
2.

[GaMi) H. Gazit, G. L. Miller, "An improved parallel algorithm that computes the bfs numbering
of a directed graph,” Infony:. Proc. Lett., vol. 28, 1988, pp. 61-65.

[GaTa] H. Gabow, R. E. Tarjan, "A linear-time algorithm for a special case of disjoint set union,”
Proc. 15th Ann. ACM Symp. on Theory of Computing, 1983, pp. 246-251.

[GhBh]SR. K. Ghosh, G. P. Bhattacharya, "Parallel search algorithm for directed acyclic graphs,”
BIT, 1982.

[GoTa] A. Goldberg, R. E. Tarjan, "A new approach to the maximum flow problem,” Proc. 18th
Ann. ACM Symp. on Theory of Computing, 1986, pp. 136-146.

7 - SRR

oy
LS B e

L S

o

DI A O B e

-26-

(Ha] D. Harel, "A linear algorithm for finding dominators in flow graphs and related problems,”
17th Ann. Symp. on Theory of Computing, 1985, pp. 185-194,
! (HeUl] M. S Hecht, J. D. Ullman, "Characterization of reducible flow graphs,” JACM, 21.3, 1974,
- pp. 167-175. ‘ g
: [KarRa] R. M. Karp, V. Ramachandran, "Parallel algorithms for shared-memory machines,” in .
Handbook of Theoretical Computer Science, J. Van Leeuwan, ed., North Holland, 1989, to i
= appear. ;
- [KaUpWi] R. M. Karp, E. Upfal, A. Wigderson, "Constructing a perfect matching is in Random -

NC." Proc. 17th ACM Ann. Symp. on Theory of Computing, 1985, pp. 22-32. .

[MiRe] G. L. Miller, J. H. Reif, "Parallel tree contraction and its application,” Proc. 26th Ann.
IEEE Symp. on Foundations of Comp. Sci., 1985, pp. 478-489. -

[MuVaVa] K. Mulmuley, U. Vazirani, V. Vazirani, “Matching is as easy as matrix inversion,"
Proc. 19th Ann. ACM Symp. on Theory of Computing, 1987, pp. 345-354.

(PaSt] C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complex-
ity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

(PaGoRa] S. R. Pawagi, P. S. Gopalakrishnan, L. V. Ramalmshmn. "Computing dominators in
. parallel,” Inform. Proc. Lett., vol. 24, 1987, pp. 217-221.
= {Ral] V. Ramachandran, "Finding a minimum feedback arc set in reducible graphs,” Journal of
= Algorithms, vol. 9, 1988, pp. 299-313.

[Ra2) V. Ramachandran, "The complexity of minimum cut and maximum flow problems in an
acyclic network,"” Networts, vol. 17, 1987, pp. 387-392. ?

[Ra3) V. Ramachandran, "Fast parallel algorithms for reducible flow graphs,” in Concurrent :
_ Compwations: Algorithms, Architecture and Technrology, S. K. Tewksbury, B. W. Dickinson and ;
i S. C. Schwartz, ed., Plenum Press, New York, NY, 1988, pp. 117-138.

(Rad] V. Ramachandran, "A minimax arc theorem for reducible fiow graphs,” tech. report 87- X
001, Intemnational Computer Science Institute, Berkeley, CA, 1987. ;
(Sh] A. Shamir,”A linear time algorithm for finding minimum cutsets in reducible graphs,” SIAM j
J. Computing, vol. 8, 1979, pp. 645-655.

a (Tal] R. E. Tarjan, "Testing flow graph reducibility,” JCSS, vol. 9, 1974, pp. 355-365.

o {Ta2] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

S —

4o e -

AT ST PV T T R T r e

RSN ER O N A WP YR E N RPN A SO WM N TR AN e s -

